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Many of the problems of approximating numerically solutions to nonhomoge-
neous hyperbolic conservation laws appear to arise from an inability to balance the
source and flux terms at steady states. In this paper we present a technique based on
the transformation of the nonhomogeneous problem to homogeneous form through
the definition of a new flux formed by the physical flux and the primitive of the source
term. This change preserves the mentioned balance directly and suggests a way to
apply well-known schemes to nonhomogeneous conservation laws. However, the
application of the numerical methods described for homogeneous conservation laws
is not immediate and a new formalization of the classic schemes is required. Par-
ticularly, for such cases we extend the explicit, second-order, total variation dimin-
ishing schemes of Harten [11]. Numerical test cases in the context of the quasi-one-
dimensional flow validate the current schemes, although these schemes are more gen-
eral and can also be applied to solve other hyperbolic conservation laws with source
terms. © 2001 Academic Press

1. INTRODUCTION

The present research is concerned with the formulation of conservative finite differel
schemes with the total variation diminishing (TVD) property to solve systems of nonline
hyperbolic conservation laws with source terms.

Nonhomogeneous systems of conservation laws arise naturally in many problem
practical interest. This includes, among others, Euler equations with a source term wit
has a geometric character. For example, the calculation of the unsteady one-dimens
flow in ducts of varying cross-sectional area as well as flow with cylindrical or spheric
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262 GASCON AND CORBERAN

symmetry. Sources of similar types are present in the shallow water equations for flow
nonhorizontal channels.

Hyperbolic systems of conservation laws with a source term in one dimension can
written by the equation

Wi + F(W)x = S(x, W), «y

whereW = W(x, t) is am column vector formed by the flow variablds(W) is a vector-
valued function ofn components which includes the corresponding fluxes2rdW) is
the source vector.

In the past few years, a number of shock-capturing, finite difference schemes have &
constructed to solve systems of homogeneous conservation laws, or which include an all
negligible source term (see, for example, [17] and [27]). These methods are character
as being of second-order or by their higher accuracy in the smooth regions of the solu
without presenting the spurious oscillations associated with the conventional second-o
schemes in the presence of discontinuities. Harten in [11] introduced the TVD schen
which have the property that they may be second-order accurate and oscillation-free ac
discontinuities. Special attention should be made to the proper formulation of those sche
when they are applied to nonhomogeneous hyperbolic systems. In this paper we are
ticularly concerned with the extension of the classic TVD schemes developed by Hartel
[11] to nonhomogeneous conservation laws.

Until some years ago, several authors solved the nonhomogeneous problem by u
a conservative finite difference method developed for the homogeneous system and
adding the effect of the source term only as a correction of the conservation step. T
strategy is valid for certain types of problems, but when the source term has a str
influence on the solution, it becomes very inefficient and can lead to numerical errors, p
accuracy, and nonconvergence.

A commonly used technique to approximate solutions for nonhomogeneous conserva
laws is the fractional step splitting method in which one alternates between solving, in e
time step, the corresponding homogeneous system

W+ FW)x =0
and a system of ordinary differential equations
We = S(x, W)

allowing for the use of the optimal existing schemes for each subproblem. Particula
we can use TVD (see [11, 12, and 25]), or ENO schemes (see [20] and [24]) to sO
the homogeneous system. Nevertheless, while in some cases this approximation is
good, in other cases the results are not suitable. In particular, these methods fail wher
solution is close to a steady state in which the flux-gradient and the source terms sh
be compensated. In other words, these methods do not discretize the steady-state eqt
associated with (1)

F(W)y = S(x, W).

Some authors, as Van Leer in [28], have already indicated the need to modify the
merical methods of the upwind type to solve single nonhomogeneous conservation |
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substituting the initial numerical distribution that, for first-order methods, is consider
uniform in each volume of control in the homogeneous case, by stationary distributions
the nonhomogeneous problem in each time step. This idea was also utilized in [10] by C
and Liu, who proposed a generalized Riemann problem where the initial data were not
form on each cell but satisfied the steady-state equations so as to construct a random-c
method for quasi-one-dimensional flows.

Recently numerical schemes, based on flux discretizations which take the source te
into account (upwinding the source terms as well as the fluxes) or improve the resolutiol
the source terms, have been developed to solve nonhomogeneous hyperbolic consen
laws. In [23], Roe presented an empirical approach based on the application of upw
high-order schemes to a modified flux that includes the source terms. This method
applied by Glaister in [9] to solve the Euler equations of gas dynamics in one spa
coordinate.

In [26] Sweby reduced the nonhomogeneous problem to homogeneous form wit
change of dependent variable; then TVD schemes can be effectively applied. This met
includes the source terms without modifying the numerical flux, applying the TVD scher
only for the fluxes.

Leveque and Yee [16] utilized MacCormack-type predictor-corrector methods with fl
limiters and splitting methods to incorporate the source terms, but the flux and the sol
terms were treated in separated steps in both cases.

Bermidez and \Azquez [2] studied methods to get upwind discretizations of the sour
terms when the flux is approximated by using flux-difference or flux-vector splitting tec
nigues. In order to find numerical schemes which approximate, exactly or with an or
greater than one, stationary solutions for the shallow water equations, they introducec
conservation property and showed that the extensions of the Q-schemes of Van Leel
Roe verified this property but the extensions of the flux-vector splitting methods do not.
[29], Vazquez-Cenahi generalizes these schemes for nonuniform meshes in order to sc
the shallow water equations in channels with irregular geometry.

Motivated by the fact that if there is a source term the Riemann invariants are not cons
along the characteristic trajectories, Papalexaretréd. [21] have described the curves in
space—time along which the characteristic system holds for the nonhomogeneous case
new decomposition is used by the authors in the design of efficient unsplit algorithms
the numerical integration of the systems of hyperbolic conservation laws with source ter

A recent alternative approach has been introduced by Leveque [19], who has propt
the quasi-steady method based on the modification of the wave-propagation algorithms
sented in [18] to achieve the balance between the flux and source terms for nonhomoger
problems when the solution is close to a steady state. The balance is reached by introdt
additional Riemann problems in the center of each grid cell whose flux difference cancels
source terms exactly. The same line has been adapted by the work of Jennylard ],
who have introduced a new approach for a flux solver, the Rankine—Hugoniot—Riem:
solver, which takes into account source terms, viscous terms, and multidimensional effe
The method is based on the transformation of the volume integral of the source terms
surface integrals.

In this paper, we describe a general method to extend the well-known TVD scher
introduced by Harten in [11] to hyperbolic conservation laws with source terms, givil
rise to a set of sufficient conditions which are very useful in checking or constructi
second-order TVD schemes for the nonhomogeneous case.
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Our method is based on the following strategy. Suppose that we are interested in
steady-state solution associated with the problem

Wi + F(W)x = S(X), )

where the source termis independent of the conserved vawablgegrating the stationary
associated equation

F(W)x = S(X)

the flux-vectorF (W) becomes

X
Fw) =K+ [ swdy ®)
with K constant. This expression indicates that to secure a correct discretization of
stationary equation associated with nonhomogeneous conservation laws, it is convenie
describe schemes with the same treatment for the fluxes as for the primitive of the sot
terms; i.e., when the physical flow is upwinded the source terms also have to be upwin
and when one uses centered discretizations for the flux, one has to also use centere
cretizations of source terms. Equation (3) suggests the form in which the source te
will be introduced into the methods. We shall denote

X
G W) = Fw) - | sy dy
0
and the original Eq. (2) can be written as
W + G(X, W)x =0, (4)

whereG(x, W) is a new flux formed by the addition of the physical flux function and the
primitive of the source term.

This transformation of the nonhomogeneous system in a homogeneous problem prov
a suitable technique to apply TVD and other types of schemes, commonly used in
homogeneous case, to systems of conservation laws with source terms. Additionall
allows us to include correctly the source terms as a divergence term providing the sch
the way to recognize steady solutions for nonhomogeneous conservation laws.

The present work can be seen as a formalization of the empirical technique sugge
by Roe in [23] to limit the second-order terms in the nonhomogeneous case. As partict
cases, the extensions of Q-schemes of van Leer and Roe to hyperbolic systems with sc
terms proposed by Bennlez and \dzquez in [2] can be obtained directly by application
to Eq. (4) of van Leer’s classic Q-scheme and Roe’s flux difference scheme, respectiv
described originally for homogeneous hyperbolic systems in [13] and [22].

On the other hand, when the source term is considered dependéhtraaw propagation
speeds of the flow are introduced, which are the addition of the classic characteristic sp:
introduced by the homogeneous case with a new term which is a consequence of
source terms’ presence. This new contribution has the same form as the propagation sy
introduced by Papalexandis al.in [21].
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Before introducing the finite-difference formulation, we need to define our discretizati
nomenclature and indexing practices. We consider a fixed grid in space and time with
sizesAx andAt, respectively. Integrating (1) on the rectangte b2, Xj+1/2] X [tn, tht1],
we obtain

1 "t
Wi =W =2 L (FW (a2, 1)) = F(W (X2, 1)) it
1 tht1  fXj41/2
+ — / S(x, W(x, t)) dx dt, (5)
AX th Xj-1/2

where the discrete nature of the problem forces us to replace the exact integrals by the avi
values for the variable®/!" andW'"**; i.e., for the numerical cel], [X;j_1/2. Xj4+1/2]. and
in the time instant,,, we denote

1 Xj+1/2
W= -—— W(X, t,) dx.
AX Xj_1/2
Equation (5) can be rewritten as
n+1 n 1 it
W =W — = [ (G(Xjs12 W(Xj41/2: 1)) = G (Xj-172, W(Xj-12,1))) dt,
th

where
G(x, W) = F(W)—/O S(y, W(y, 1)) dy.

Then we shall discuss numerical approximations to solutions to (1) which are obtainec
(2k + 1)-explicit schemes written in conservation form

n+1 _ n n n
W =W —A[G], 1 — Gy, (6)
_ At
wherex = £ and
G?+1/2 = G(Xj_k+1, oo Xjgkos an—k+1’ ey an+k)'

HereG is a numerical flux function constructed by the addition of a numerical flux functic
associated with the physical flow with a numerical source function corresponding to
primitive of the source term.

For consistency, we will assume

G(X, ..., X, W, ..., W) = G(x, W).

Ifthe numerical flux function associated with the physical flow is consistent with the physic
flow F(W)—working with consistent schemes in the homogeneous case, for example
the above consistency property will only require that the discretization corresponding to
primitive of the source terms converging at the source term’s primitive wtteand Ax
tend to O.
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Furthermore, in order to find suitable approximations to the steady-state solutions,
will require that the following discretized equation

G?+1/2 - GT—l/Z =0 (7)
be an approximation of at least a second-order to the stationary equation
F(W)x = S(x, W)

because, ifW]") approximates the stationary equation on the levgien, from (6),Wjn+l
and W' will be equal and the scheme will recognize stationary solutions with at lea
second-order accuracy.

This paper is organized as follows. In Section 2, the development of an explicit seco
order finite difference scheme based on the proposed strategy is presented as an exte
of the classic Lax—Wendroff scheme for a scalar nonhomogeneous conservation law. -
scheme does not prevent the total variation of the numerical approximations fromincreas
For this, we study sulfficient conditions in order to construct second-order TVD schemes
nonhomogeneous conservation scalar laws. Numerical experiments for the Embid prok
(introduced in [7]) validate the results. The next section deals with the development of th
ideas for the vectorial case. When the Jacobian matrix of the flux function and the evalua
of the source terms in the middle have been based on Roe’s linearization technique
obtain, as a particular case, Roe’s flux-difference scheme for conservation laws with sol
terms originally proposed in [23] and afterward in [2]. Similarly, we obtain the extension f
nonhomogeneous conservation laws of the first-order Q-scheme of van Leer proposed i
when the arithmetic mean is applied to evaluate the Jacobian matrix. Finally, the applica
of the described schemes to solve Euler equations with source terms is explained ant
calculation of results are presented in the last section. These results include example
guasi-one-dimensional nozzle flows, which confirm that the method gives excellent rest

Further details about the description, analysis and application of the schemes descr
in this paper are presented in the Ph.D. thesis of the first author [8].

2. TVD, SECOND-ORDER ACCURATE SCHEMES FOR A CONSERVATION
LAW WITH SOURCE TERMS

Classic schemes, modified slightly to take into account source terms, are very effec
when they are applied to approximate numerically solutions to systems of conservation I;
with a source term which has a low value with little influence on the solution. This is tt
case of 1-D flow with moderate friction and heat transfer in constant cross-section pif
However, the authors found that those techniques failed in the calculation of high veloc
flows where the variation of the cross-section of the pipe is from moderate to high. In t
case, the source term includes terms related to the variation of pipe cross-sectional are:
terms related to the presence of friction forces and heat transfer at pipe walls.

Traditionally, the two-step Lax—Wendroff method, corrected with a FCT technique (s
[3]), has been largely chosen in fluid dynamics as a good compromise between accuracy
computational time for the calculation of unsteady flows in engine ducts with a const:
cross-sectional area. This is the reason why we tried to apply the classic two-step L
Wendroff method to the governing equations of unsteady 1-D compressible flow throt
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pipes with high ratios of cross-sectional variation. However, in these cases we founc
important deviation from the exact solution.

In order to show the motivation for this work, we start this section illustrating the behavi
of the two-step Lax—Wendroff scheme when applied to solve numerically nonhomogene
conservation laws. Limiting our attention to the scalar case, we consider

wy + f(w)x = s(x, w), 8)

where the source term is a smooth functiorxaindw.
This second-order explicit method taking into account the additional source term is ba
on two steps on a three-point stencil. Firs Lﬁﬁ is computed by the following equation

1 At
n+1/2
witiz = 5| W+ wla =2 (fla = 1) + (5T +504) | ©
wherei = %. Then the solution"** is evaluated by
1 n+1/2 n121 , AU npre | n1g2
wit =wl = A [ — 0] + 5[5 +5702) (10)

2

In order to examine the capacity of the above second-order scheme to capture the st
states of nonhomogeneous conservation laws, we show numerical experiments for the E
problem, described by the following nonlinear scalar conservation law with a source te
explicitly dependent o andw

{wt+(§w2)x:(6x_3)w’ O<x<1 (11)

w(0,t) =1, w(@,t) =-0.1

This problem was presented in [7] as a simple scalar approximation to the 1-D equati
that model the flow of a gas through a duct of variable cross-section. It can be verified (
[7]) that there are two entropy satisfying steady solutions for the Embid problem (11). C
is stable in time with a standing shockat= 0.18 and the other with an unstable standing
shock atx, = 0.82. The steady solutions for the Embid problem (11) are

1+ 3x% — 3x, X < X
w(X) =
—0.143x% =3, X > X;

for j = 1, 2. We computed the steady profiles by taking initial data with a jump at the stat
shock location.

Figure 1 shows the numerical solution for the Embid problem (11), calculated by t
two-step, adapted Lax—Wendroff scheme compared with the exact solution (the solid lin
the true solution). The computations were performed using 41 nodes equally spaced ir
domain [0, 1] and the CFL equal to 0.25. The two-step Lax—Wendroff method was unstz
and Fig. 1 shows numerical results obtained with this scheme after 800 iterations. We |
that using other larger CFL numbers increases the instability of the method.

The numerical results obtained with this scheme for the present problem indicate that
method will not be a good candidate for the integration of nonhomogeneous conserva
law systems, and particularly for the calculation of unsteady flows in engine ducts w
variable cross-sectional area, because it does not recognize stationary solutions.
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FIG. 1. Steady numerical solution for the Embid problem, calculated with the modified, two-step La»
Wendroff scheme and compared with the exact solution (solid line).

We can state that usirg] as a discretization to the source term in the second stage of t
two-step Lax—Wendroff method leads to identical numerical results.

We now see how we can define a second-order scheme for (8) following the strat
described in the Introduction. First, we propose to rewrite (8) using the following homog
neous law

wi + g(X, w)x =0 (12)

by introducing the flux function defined as

X
g0, w) = fw) ~ [ sy, wiy. ) dy (13)
0
and we propose an explicit three-point finite difference scheme in conservation form for

conservation law (12)
1/2 1/2
witt =] —i[g]l1z - 912l (14)

where the estimation of the new flux,at the point mid-way between grid points is obtained
by an expansion formula based on Taylor series which takes the form of

ag |"
n n
g +9j41— )LET

1
n+1/2
Q112 = 2

(91— g?)] : (15)

j+1/2

Here

Xi
g' = fi”—/ s(ty, w(y,ty))dy fori=j, j+1
0
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and

I )
Jw Jw Jw 0
The above scheme extends to systems in a similar way and defines a second-orde
curate method, an extension of the one-step Lax—Wendroff scheme for nonhomogen
conservation laws [6]. We can state that (14), (15) are obtained applying the classic
step Lax—Wendroff scheme for homogeneous conservation laws to (12) and the prese
scheme is reduced to the classic one-step Lax—Wendroff method for the particular ca:
whichg = f, i.e., for the homogeneous case.
Furthermore, since

9197 =0 V¥j

is a second-order discretization to the stationary equation associated with (12), the sct
(14)—(15) recognizes stationary solutions for the nonhomogeneous case with the s
accuracy.

By introducing the following notation

Xk
Xi

and using simple algebraic manipulations, we showed in [6] that the proposed sch
admits the expression

n+1 __ n LW LW n n
with = wi = a[f, = 15 5] = A[B_yp 5 + b0 0]

n

At? | 3s|" s
_ -~ fn f b — fh— fD b"
4AX | dw j+l/2( fra 1B ) + ow ].71/2( i j-1 T 05 lj)]
(16)
where
LW f fn ., —b" b —af ’ fn f b 17
j+1/2= 2 + =0 Bl =2 (=140 0) . A7)
j+1/2

Figure 2 shows the numerical solution for the Embid problem calculated by the adap
one-step Lax—Wendroff method, described by (16) and (17), compared with the exact s
tion (solid line). The steady solutions were calculated with this scheme using a CFL hum
equal to 0.8 and by marching in time until the convergence criterion

max]u)”+1 wf| <107
was satisfied. We chose, in this case, the following approximatioris' for

+
J -1 J
Dz = - e -

w +w )
n _ l+1 2 Xjt1/2
e =~ X - 3
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FIG.2. Steady numerical solution for the Embid problem, calculated with the adapted, one-step Lax—Wend
method and compared with the exact solution (solid line).

because then

w2 _wz . . "Xj+1
figi—fj+bjj11=0¢ le P Y +2w1+1/ (6x — 3)dx
X

Xj+1
<:>wj+1—wj=/ (6x — 3)dx
Xj
and the last equation is exact for all smooth solutions satisfying the steady equation a
ciated with the Embid problem (11)

wy = (6X — 3);

then we can conclude that the scheme (14)—(15) recognizes exactly stationary solution
the Embid problem in smooth regions.

Numerical results with other choices fig} ;| ; has been omitted because the difference:
would not be visible in the graphs. However, in the particular case of the Embid proble
this approximation proved to be the most accurate. It is worthwhile noting the similarity
our evaluation fob?’j+1 with the proposed approximation of the source term employed i
[2] for the Saint—Venant equations in order to satisfyeRactC-property.

Although the accuracy of the solution calculated with the adapted, one-step Lax—Wend
scheme is very good in smooth regions, the inevitable presence of spurious overshootsii
proximity of the shock, typical of second-order schemes, has been observed. This motiv
the need to build TVD schemes to compute solutions for nonhomogeneous conserve
laws maintaining the balance between flux and source terms at steady states. To this
we need to construct efficient techniques with a limitation of the second-order terms ¢
with the capacity to recognize stationary solutions for conservation laws with source ter

As opposed to the homogeneous case, where the classic TVD schemes introduce
Harten to integrate the homogeneous equation

wi + f(w)y =0 (18)
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have the form

n+l

witt = wh —a[fiae - fio)].

where the evaluation of the flux in the middle between two points is given by
f~ _ 1 fn fn 1 n n n
i+y2 =5 |+ j+1_XQ(aj+l/2)(wJ'+l_wi) ;

with

fip1— f .
o = A
j+1/2 Jw

: (19)

j+1/2 N A

3w | |fw]+]__'lUJ=O

J

andQ(x) is some function, named as the coefficient of numerical viscosity; for the nonh
mogeneous case

we +9g(X, w)x =0
it will be necessary to avoid approximations to the spatial derivatives of the consen
variables, substituting these by discretizations to the spatial derivatives of the flows in or

to introduce correctly the source terms, balanced with the fluxes in each volume of cont
For this, we now propose the finite difference scheme in conservation form
w?ﬂ =w] — A [§j+1/2 — Gj-1/2) . (20)

with a numerical fluxjj,1,» defined by

. 1
Gi+12= 5 9] + 91— (a1 + Blias2) (941 — )] (21)

as the generic formulation for a scheme applied to a nonhomogeneous conservation la
the flux expressiory;.1,» is defined by (19) and, analogously, we denote

bii—bj -
Bjt12 = e (22)
0 if Wjt1 — Wj =0,

where
X Xi
b=—/ s(y, w(y, t))dy and bi=—/ s(y, w(y, t)) dy.
0 0

Note that, for the corresponding homogeneous law (18), the characteristic decompos
of the problem can be written as
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according to the one in whictv remains constant along characteristics. In order to fin
the paths along whicty remains constant for the nonhomogeneous case (8), Papalexan
et al.[21] propose the following characteristic decomposition

dw dx s
dt dt Wy

Our estimation fotrj.11/2 + Bj+1/2 can be interpreted as an averaged numerical expressif
for this propagation speed multiplied hybecause

s
i(e-2)
j+1/2 Wx

In the following we can apply well-known results in order to secure the TVD property fc
the nonhomogeneous case, because the original problem (8) is converted to a homogel
problem (12). As a result of this analysis, we obtain conditions ligat must verify in
order to show the TVD property for the scheme described by (20) and (21). For this,
apply the following theorem according to Harten.

b
+A—

X
¥jy12 + Bjre ® A—
j+12 W

Wy

j+1/2

THEOREM2.1. If a numerical scheme applied {@8) is rewritten in the form
1 _
wi™ = w4+ Cflyp(wiyy — wf) = Cilyp(w] —wiy), (23)
where q+1/2 and G, , are functions ofvj andwj1 which satisfy
Cii12=0. Ciyp =0 and Giyp+Cryp=1
then schemé23) is TVD.

ProposITION2.1. If h(x) in (21) satisfies the following inequalities

1
l1<hx)<—-, 0O<x<l1
X (24)

X |

<hx)<-1, -1<x<0
then schem@0) with the flux defined b{21)is TVD under the CFL restriction
max|af 1o + Bl < 1
Proof. Substituting (21) for the numerical flux values in (20),
™ = = 310~ ) + (@ = 01-0) (et ) (62— )
+ h(a?fl/z + /3?71/2) (gT - g?,l)]

and using (19) and (22), we can rewrite the scheme in the form of (23) with

Clire = 5 (@2 + Blh1s2) (N(ef i1 + Blia2) — 1)

PN

12 = 5 (@12 + Blhae) (N(ef1o + Blhaj2) +1).

N
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We consider two cases. First, if0a ; , + B}, < 1then

h(efsaz + Blia) + 12 h(ofia +Blhrp) =120
and second, if-1 < a], 1, + B{}1/2 < 0, then
h(oya)o + Bjraj2) =1 = h(efiap + Blhafp) +1<0.
Therefore, in both cases we have
Cli2z0. Cyp=0
Cliaz+ Cliae = (@12 + Blrap)N(@f 1o+ Blia2) <1

applying the conditions (24) fdr(x). Then by Theorem 2.1 the scheme is TVDm

PrOPOSITION 2.2.  Schemeg(20)(21) recognizes steady states for nonhomogeneol
problems with at least second-order accuracy.

Proof. From (21), we have

=

—~

Gj+12 — Gj-12=5 (1 - h(a?+1/2 + :3?+1/2)) (9?+1 - 9?)

NI =

2
+ 5 +h(ef 2+ B 12)) (9] — 9 ).

If the data{w{} satisfy the following second-order discretization of the ordinary differentie
equations’ governing steady flow

919y =0 V¥j (25)
then
Gj+12—Gj—12=0, Vj

and, from (20);w§”rl andw' will be equal. Therefore, the scheme (20)—(21) will recognize

stationary solutions with at least second-order accuramy.
Remark. When the source term vanishag=£ f), the modified scheme (20) with the
flux defined by (21) has the same generic form as the Harten TVD schemes for sc

functions depending only ok andej;1/2. Furthermore, when the speeds associated wit
the source term can be insignificant as compared to the characteristic speeds; i.e.,

|Bi+i2| < |ajra|, Vi

then
sign(ej+1/2 + Bj+1/2) = sign(e;41/2)

resulting in an upstream differencing scheme with respect to the characteristic associ
with the homogeneous case.
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Remark. Note that the numerical flux (21), whelngéx) = x, defines the flug?ﬁﬁ for

the extension of the Lax—Wendroff scheme. The chbizge = sign(x) leads to an extension
of the Courant—Isaacson—Rees scheme. Of course (24), the latter scheme, satisfies the

property.

Scheme (20)—(21) with(x) satisfying the restrictions (24) is only a first-order scheme
The modified equation can be written as

w+ fx—s= % [h@ + 8) — (@ + B (AX) (fxx — S + O(AXD) (26)

In order to convert the first-order accurate TVD schemes described into second-ordel
curate ones for the nonhomogeneous case, we use the technique developed in [11] fc
homogeneous case. The basic idea is to apply a TVD first-order accurate scheme ftc
equation

we+(@+¢)x =0,

whereg denotesf — fox sandg is an approximation to the first term of the right-hand side
of (26); i.e.,

1
¢~ S+ ) — (@ + HIAX)G.

Hence, to achieve second-order accuracy while retaining the TVD property, we propose
following numerical flux
_ 1
9j+12= 5 [9? + 0+ o]+ — h(a?ﬂ/z + B + an+1/2)
< (0711 — 9 + ] — ¢])].
with

A Pj+1— Pj

y Wiyl —wj’ wj+1_wj 750
j+1/2 =
07

wjr1—wj =0
and

Jbicael}s i Sjpa2 =si-12

b = { Sjs12Min {|@j 412 27)

0, if Sjy12 # Sj—12

wheres; 11/ = sign(¢;1/2), being

- 1
iy12 = > [h(ejsr2 + Bjr12) — (@12 + Bj+1/2) (i1 — 9))- (28)
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PrROPOSITION2.3. Let h(x) be such that

1§h(x)§l, O<x<1
. g (29)
iih(X)<—1, —1<x<0
Then the scheme
w?*l =w] — A (G412 — Gj-1/2 (30)
with the flux defined by
_ 1
9i+12 = 5 (0] + gy + o] + ¢ —h(a]iao + B]ao +vas2)
x (91— 9] + ¢ 1 —9])] (31)

satisfies the following properties

1. The scheme is TVD under the CFL restriction
max{laf sz + Bliapl} < 1.

2. Supposeit = O(AXx) and the function fx) such that xkix) is Lipschitz continuous
then the difference scheme is a second-order accurate sclextept at two consecutive
local extreme points.

3. The scheme recognizes steady states for the nonhomogeneous problem.

Proof. We conclude from Theorem 2.1 that the scheme (30)—(31) is TVD under t
CFL restriction

m]_ax{ o 12+ Bliaje + Vel ) =1 (32)
because it can be rewritten as (23) with

Clip= (0‘?+1/2 + Biay2 + an+1/2) (h(o‘?ﬂ/z + Blhaje + an+1/2> -1) =0

NI NI

2 = 5 (@2 + Bl + vihae) (h(efiyz + Bl + ¥ihap) +1) 20

and
0<Ciiyp+Cjip= (0‘?+1/2 + By + an+1/2) h(“?+1/2 + Biy12 + J’jn+1/2) =1

Now, notice thap! andg{', ; cannot change signs without vanishing at the transition poin
so that

’

#7} < 167110

|#],1 — 7| < max{|¢].,
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and consequently

1
‘an+1/2‘ =5 [(0‘ M Bl g+ BYan) — (@12 + Blhas2) 2} . (33

To derive 1 we show that (32) is implied by the original CFL condition. Note that if th
original CFL restriction is satisfied, i.e.,

o] 12+ Blr1e| = 1.

then
o 1y2 + Bl ae + Visapel < lofiae + Bl + 7]l
= |ofhyo+ Blare| + %(1 — (1 + /3?+1/2)2)
=1- %(|O‘?+1/2 + Bl - 1) =1,

using (33) and the inequalityh(x) < 1.
According to Harten, in order to see that (30)—(31) defines a second-order accul
scheme, it is sufficient to show the following relation

— 1/2
Gj+1/2 = Oj11) + O(AX?)

for all smooth solutions of (12), becaug ﬁﬁ described by the equation

1
9?153 = 5{9? +0f - (a?+l/2 + ,3?+1/2) (9741 — 9?)} ,

defines a numerical flux of a second-order accurate scheme, an extension of the well-kn
Lax—Wendroff method for a nonhomogeneous conservation law (see [6]). To this end,
obtain

_ 1
9j+1/2 — 9?1% = é{d’? +oia+ [(“?H/z + 5jn+1/2) - h(“?+1/2 + ﬂ?+1/2)](9?+1 - 9?)
— [h(a 1o+ Blaj2 + ¥ay2) (971 — O] + 71 — 8])
—h(efyao + Blhap2) (0742 — 9]} (34)

where we have added and subtracted the te@, ; , + £],1,,) (9], — d) at the right-
hand side of (34). First notice that, from (27), the case

n _ ah
Sj+1/2 = Sj_1/2

gives
n 1 n n n n
O = S [$1sa2 + 8112 = Siva2| @112 — @11
_ 1. _ _ _
= ¢zt 51012 = W2 — Si+1/2|¢ 412 = Df_1)2]] (35)

_ 1. — _ _ _
= ¢T71/2 + 2 [¢T+1/2 - ¢T71/2 - Sj+l/2|¢?+1/2 - ¢?71/2|] :
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If we assumexh(x) is Lipschitz continuous andt = O(Ax), from definition (28), we can
conclude

‘;?H/z - 5?—1/2 = O(AX).
Therefore, using the expressions of (35) we have
o] = ‘/)_T+1/2 +0(AX?) = ‘;?—1/2 +0(Ax?)
and consequently
O+ 1 = 20,1, + O(AXD)
Py — 7 =01 — @715+ O(AXD) = O(AXD)
or equivalently,
¢ + ¢ = [N 1o + B]11j2) = (0412 + Blia2)] (941 — 9]) + OAX?) (36)
o721 — 97| = O(AXD) (37)
are satisfied. Furthermore, note thatik) satisfies the relations (24) then
xh(x) — x*>>0
and from the definition 0", , , we obtain
4172 = SIGN($] 11/2) = sign(wf,; — wf).
Thus, the casg],; , # s]_;, implies
wx|j =0

becausev| is a local extreme point. In this casg, = 0 butqb_T+1/2 = O(Ax?), then (36)
and (37) are also satisfied. We remark thatfandw!', ; are two consecutive local extreme
pointsthenp] = ¢ ; = 0and the flux defined by (31) has the same form as (21), describil
only a first-order scheme.

Applying (36) we can rewrite (34) in the following form

n+1/2

Oj+1/2 — Gj11)2 = [h (0‘?+1/2 + ,3?+1/2) (9?+1 - g?) - h(“?ﬂ/z + ﬂjn+1/2 + J/jn+1/2)

(011 — o + 071 — ¢])] + O(AxX?).

X NIk

Sincexh(x) is Lipschitz continuous (we assume the constant tb péhen

lh(a g+ Bl 1o+ vha2) (01— 9 + 67— 97) —h(al 10+ Ba0) (971 — )|
- £| 0ol [l g — w = L|g0,, — 0|
= 5 Yitel Wi = Wil = L@ — @

and (37) completes the proof of part 2.
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Finally, to prove part 3 we consider that the dax#} satisfy the second-order discretiza-
tion of the ordinary differential equations governing steady flow

91— 97 =0, V] (38)
then
¢,1,=0 Vi=¢]=0 V=0 12-0j-12=0 V]
and, from (30),

w?“ =w], Vj

with the same accuracy as (38) approximates the stationary equatiors. =

Figure 3 shows the results of applying to the Embid problem the second-order T\
scheme (30)—(31), with(x + 8 + ) = sign(« + B) + sign(y). Thetime stepwas chosen
such that

mjax{ |@j 1172 + Bjt12|} = 0.8.

The scheme produces an extremely accurate steady solution. The results with the |
order TVD withh(« + 8) = sign(« + 8) and the corresponding second-order TVD schem:
were both very similar reproducing the exact steady solution except for one internal sh
point. The main difference between the two solutions was the convergence rates of |
schemes. The first-order TVD scheme required 86 iterations to reach the stationary solt
with a residual less than 1&° as compared to the 67 iterations which were needed by t
second-order TVD method.

Figure 4 shows the logarithm of residual errors with respect to the number of iteratic
for both schemes from 30 iterations (the rate of convergence is very similar for the ec

-0.5 1

14

FIG. 3. Steady numerical solution for the Embid problem, calculated with the adapted, second-order T
scheme, compared with the exact solution (solid line).
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—X—TVD2
~ <=~ TVD1

LOG10(res)

= 10 L] Ll Ll L} T 1
30 40 50 60 70 80 90

Iterations

FIG. 4. Convergence histories of the first-order (TVD1) and second-order (TVD2) TVD schemes for t
Embid problem.

iterations). Numerical results obtained with the second-order TVD scheme considel
Bj+12 = 0, V] lead to similar results but 480 iterations were needed to reach the station

state.

3. TVD SCHEMES FOR SYSTEMS OF CONSERVATION LAWS WITH SOURCE TERMS

In this section we extend the results of the previous section to hyperbolic system:
conservation laws with source terms of the form

W + F(W)x = S(x, W), (39)
whereW = W(x, t) is the column vector witln components formed by the flow variables,
the flux F (W) is a vector-valued function ar8(x, W) is the source vector.

Following the method described in the previous section for the scalar case, we can cor
the conservation law system with a source term (39) in a homogeneous problem. To

end, we define
X
GO W) = Fw) — [ Sty Wiy, ) dy. (40)
0
Hereafter, by simplicity, we will denote

B(x, W) = — /0 S(y. W(y. t)) dy

and when the time step is not indicated it will mean that we are considering evaluation:
the instann.



280 GASCON AND CORBERAN

Since By = Swhen S(., W(., 1)) is a piecewise continuous function, Eq. (39) can be
written as

W + G(x, W)x = 0.
First, we consider the linear, constant coefficient system
W+ IWs =S, (41)
whereJ is am x m constant matrix.

If the system (41) is hyperbolic, the matrixhas real eigenvalues and a complete set o
linearly independent right eigenvectors. LR2tbe the matrix whose columns are the right
eigenvectors ofl, then

J=PDQ, withQ=P7, (42)
where

D =Diag(ax), k=1...m

anday are the eigenvalues df.
By choosing a new set of variablels the characteristic variables, defined by the formule

U=QWw
and multiplying Eqg. (41) byQ, we obtain
(QW) + QIP(QW)x = QS
or
Ui + DUy, = QS (43)
This is an uncoupled set of nonhomogeneous scalar equations, which we can solv
applying to each of thea scalar characteristic equations the method described in the previc
section for the scalar case. That is,
Ut = U]~ (G122 — GL1p2) (44)

with the numerical fluxGY, which is defined by
_ 1 -
iy =5{G] +GJla+ @) + )41 —h(AD)(G]}; — G} + @jua — ®))},  (45)

where

GUZQGZQ(F—/Q§=DU+QB
0
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®; denotes an vector, of which componen@ are defined by an expression similar to the
scalar case, i.e.,

k H +k <k if ok _ <k
" {Sj+1/2m'”{|‘/’1'+1/2 $5 apl} 1S =5 1y

= K K
0, if S 1/2 # S{_1/2,

9

(46)

wherest, , = sign(¢X,,,) andg¥_ , , is the componeri of the vectord. 1/, defined
below, together witth(1D).

If we multiply the expressions (44) and (45) Byto obtain an equation in terms of the
original variables, the result is

an+1 = WJn — A(éj+1/2 - C3171/2)
with
_ 1 D
Gj+1/z=§{Gj +Gji1+ P(®) + @j;1) — Ph(AD)[Q(Gj11 — Gj) + Pj11 — D).
(47)

WhenJ is not a constant matrix, we must choose some average for the ma]?j(;@&,
Pj+1/2, andQj1/2. In this case, (47) is replaced by

= 1
Gjt12 = E{Gj + Gjt1+ Pj12(@ + @jy1)
— Pi11/20(ADj4172) [Qi+1/2(Gj1 — G)) + P — @]},

where®;j is defined by (46) from

_ 1 _ _
Djr12 = é(h(lD)jﬂ/z —ADj11/2) Qjs1/2(Fj1 — Fj + Bjj11).

Here we have denoted 1B ; the vector—f):j S(y, W(y, ty)) dy and

with

k Kk
i 3bj.1/2

k _ k _
A1 =2 . By =

’

K K
SUj a0 SUj 1o

wheresuX,; ,, 8t ,, andsbk,, , can also be viewed as the components of the vecto
W1 — W, Fj41 — Fj and By, — Bj in the coordinate systePf, , ,}; i.e., it denotes
the componenk of

Qj+12MWjy1 —Wj),  Qji12(Fjz1—Fj), and Qji12Bj 41,
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respectively. Finallyyl-"H/2 can be calculated as an extension of the scalar case

ok, —of . K
AL ifuf ., #0
Viiye = Uiz
0 if u¥,;,, =0.

ProPOSITION3.1. The scheme
Wit = W]~ 2(Gj112 — Gj-1y2) (48)

with the flux defined by

— 1
Gjs12 = E{Gj + Gji1+ Piro(®j + ®j11)
- (49)
— Pj412h(ADj11/2) [Qj+1/2(Gj+1 — Gj) + Pji1 — @]},

where the diagonal matrix (. Sj+1/2) is such that k fulfil the conditions of24), satisfies
the following properties

1. When the Jacobian matrix is constatiie scheme is TVD under the CFL restriction

m@xmjax{‘ah‘ﬂ/z + Bl <L (50)

2. Suppose f(x) such that xK(x) are Lipschitz continuous andt = O(AX), then
the difference scheme is a second-order accurate schexuept at two consecutive local
extreme points.

3. The scheme recognizes steady states for the nonhomogeneous problem.

Proof. For the Jacobian matrix constant case, we can rewrite the scheme with Egs. (
and (45). Now, the scheme is TVD under the CFL restriction (50) by direct application
Proposition 2.3(1) to each characteristic variable. Since

12 1 ~
Gilys = 5{Gi +Gjs1 = Pis12(2Dj11/2) Qj41/2(Gja — G }

defines the extension of the one-step Lax—Wendroff scheme for nonhomogeneous col
vation law systems [6], to show 2, it is sufficient to see that

Gji12 = GJ175 + O(AX?) (51)
for all smooth solutions of (39). We can write

_ 1 _ _
Gjr12— Gl1)s = épj+1/2{q)j + @41+ [ADj12 = h(ADj11/2) | Qj+1/2(Gj1— Gj)

— [N(ADj11/2) (Q41/2(Gjs1 — G) + D1 — ;)
- h(k5j+1/2) Qj+1/2(Gj+1 — G}, (52)
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where we add and subtract the teffm 1 ,h (1 5j+1/2) Qj+1/2(Gj41 — Gj) attheright-hand
side. Likewise, (52) has the form

= G2 _ K| Lk K K
Gj+y2 — Gji12 = Z P +1/2{¢j +éja+ [("‘jﬂ/z + /31‘+1/2)

— (@ a2+ BY112) 895112 — [0 (@2 + Bliaje + 2¥412)
X (59j+1/2 + ¢j+1 - ¢') hk( Qg+ :31+1/2)5g|+1/2]}

whereégﬁﬁrl/2 denotesﬁfjﬁl/z + (Sb‘jﬁrl/z and the term enclosed between key brackets ar
the components of (52) in the coordinate sysi{é?ﬂl/z}. We conclude the proof of 2 by
applying (36) and (37) to each component.

Finally, we notice that replacing (49) in (48), we have

A
Wt = Wi — E{(G,—H —Gj) +(Gj —Gj-1) + Pjr12(®j + Pj12)
— Pj_12(®j_1 + ®}) — Pi1120(ADj11/2) [Qj11/2(Gj41 — G))
+ @41 — )]+ Pi_12(2Dj-12) [Qj-1/2(Gj — Gj-1) + @} — D]} (53)

If {W]'} approximates the stationary solution associated with the nonhomogeneous cor
vation law system, we have

Gj;1—Gj=0 V] (54)

with at least a second-order accuracy. Then, using the corresponding definitid_ng{@r
and®j,

<I_>j+1/2 =0, Vj=>®;=0, V]j
and, from (53),
+1 :
W]-n = Wj”, Vj

with the same accuracy as (54) approximates the steady eqlgtiorS. =

In order to implement scheme (48)—(49), we notice that we need an approximatior
integrals of the formfoXj S(y, W(y, t)) dy Vj, according to (40). In this case, it might
be advantageous to use independent integrals over each control volume. To this enc
observe that substractirg) from G| 1,2 andG;_1,, leads to the same scheme and we cat
write

1 1
G+ G} - By = E{Fj + Fit1— Bjjr12 + Bisyzjif + Bjjeap2

1 1
5{Gi-1+Gj) = B = S{Fj + Fjsa = Bjyjo12+ Bj-12j} — Bj-1aj.

It can be verified that, with these simplifications, our numerical second-order TVD meth
(48)—(49) takes the form

WJ.”JF1 =W - [G]TX'f/zz GJTV?/ZZ] — A [Bj-12j + Bjj+1/2] . (55)
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where
1
G,TX?/zz = E{Fj + Fjt1— Bj,j+12 + Bj412j+1 + Pijr12(®j + Pj11)
— Pi+120(ADj11/2) [Qj+1/2(Fjs1 — Fj + By j11) + ®j41 — @]} (56)

Analogously, whend; = 0 Vj, the above equations describe first-order TVD scheme
which can be written as

W = W' = A[G]YY), — GIYP)5] — A[Bj-1/2j + Bjjs1s2]. (57)
where
TVvD1L 1
j+1/2 = Q{Fj + Fiv1 = Bjjty2 + Bjyiz
— Pi12h(ADj41/2) Qjr/2(Fje1 — Fj + By jn) ). (58)

Remark. The weight of the numerical source terms in the complete first-order TV
scheme (57)—(58) can be written by

1 — 1 _
5 [+ Pio12h(ADj-12) Qj-12] Bj-vj + 5 [I = Pis12h(2Dj112) Qjaare] By s,
(59)

which takes the same form as the approximation suggested byugemand \dzquez in
[2] for the source term. For the particular case in whigh .1 is evaluated applying the
rectangular or the trapezoidal rule from theandx;, nodes, andh(x D_j+1/2) in (59) is
chosen as

diag(sign(el,,))

we obtain, according to the choice of the Jacobian matrix average, the extensions of
Q-schemes of Roe and van Leer presented in [2] for nonhomogeneous conservation |
To this end, we have taken into account that

sign(x)x = [X].

4. GOVERNING EQUATIONS

In order to show the efficiency and accuracy of the described TVD schemes for nonhotr
geneous hyperbolic systems, quasi-one-dimensional nozzle flows are used. The govel
equations for the quasi-one-dimensional unsteady flow through a duct of varying crc
section can be written in conservation form as

W + F(W)x = S(x, W), (60)

where

u? p T
W(x,t) = <pA,puA, <p + > A>
2 y-1
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2 T
F(W) = (puA, (pu® + P)A, u <puz + py> A>
y—1

The system is closed by the state equatien p”—; + V—El

Here, the quantitiep, u, p, ande represent the density, velocity, pressure, and tote
energy;A is the cross-sectiory, denotes the ratio of specific heat capacities of thegass,
the heat transfer energy per unit mass per unit toniethe friction term, andy, corresponds
to the wall surface per unit of length (in this case, it is the value of the duct diameter).

The source term vectd®(x, W) includes terms related to the variation of pipe cross
sectional aredA and dissipative terms related to the presence of friction forces and h
transfer at pipe walls, which render the flow nonhomentropic.

The Jacobian matrix of the flux function is given by

0 1 0
J= r3y2 @B-—yu  y-1], (61)

u(:;*u’ = H) H-(y-Du® yu

whereH = ya—fl + “—22 is the entalphy and denotes the sound speed. The Jacobian matr
is hyperbolic and has three eigenvalues

1 1 1
pt u—a |, PP=| Uu|, P’=| u+a
H —ua u? H +ua

That is to say, the matrife diagonalizes) so that
P~1JP =diagu — a, u,u+a),

where P~1 is formed by the corresponding left eigenvectors matrix. For simplicity, w
denoteP~! asQ. ThenQ = (Q4, Q,, Q3)", where

u —1uv2 1 —1u y-1
oo (L1 3 vt vy

2a 4 a2’ 2a 2 a? 2a?
y —1u? u 1—y
=(1-Y== -1,
Q2 ( > 2 (v 2 2 )
Qs = u y—1u® 1 y—1lu y-1
*~\ 2a 4 a? 2a 2 a?’ 2a% )’



286 GASCON AND CORBERAN

5. NUMERICAL RESULTS

In this section we show computations using two test problems to demonstrate the |
formance of the previously described methods for solving (60). All numerical results we
computed by the following particular second-order TVD scheme

W = Wi =[G — GYYR] — A[Bj-/2j + Bjj1e] . (62)
where
MTVD 1 2}
Gl = Q{Fj + Fjr1— Bjjsy2 + Bjyzjs1 — Pia12h(ADj11p2)
x Qjt1/2(Fj11 — Fj + Bjj+1) } + Pjy12¥j41/2 (63)

andW;_1, is the vector whose components are given by

K K Tk K 7k K Tk
®iv1/2 = Sjt12 max{0, min{ |¢j+1/2 s Sjt1/29] 12> S +l/2¢1+3/2}}

representing the second-order contribution of the scheme. The calculations were perfor
choosing the matrik as

h ()‘ 5] +1/2) = diag(Sign(alj(+1/2 + IBIj(+l/2) ) k=1,2.3"

The scheme (62)—(63) is the particular case of Egs. (55) and (56) hm&;jﬂ/z) is
defined as

h(ADj1/2) = diag<|ali(+1/2+’3='(+1/2‘ + |Vik+1/2’> :
k=1,2,3

K K K
i1+ By Vit

For the system governing the quasi-one-dimensional unsteady flow through a duc
varying cross section, the are obtained by

at=ru—a), o®?=2ru, oa®=ArU+a)

and for ¥ we have the following expressions

gi (a2 (PR — 9o — g (@A)

1 1 3(pA
—5a P AG + 5w o
2 _ A= p (A —goA) — 25 ([GpA)
B* = (a(pA) _ ia(pA))
X az  9x

(—2+ 75 %) (PAC) — GoA) — T @A)

1 _pdu . 1A
2apA8x+232 X

B =

In the event that a denominator in the expressiongfdpecomes zero or very small, we
considergk = 0 and the propagation speeds are the corresponding characteristic spe
associated with the homogeneous flow.
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In order to implement the difference finite scheme described by (62) and (63) to fi
an approximation for the solution of the system (60) with initial conditions, we use Roe
linearization technique to obtain an average in the middleufdt, o, andp A. For our
system of equations, this averaging takes the following form:

Xiste = Pi+1Aj+1 Urys = Xi+yUjr FU) o = Xj+12Hj+1+ Hj
]+ - A ]+ - - a4 ]+ - a1
piAj Xj+12+1 Xj+12+1
Pi+1/2 = /PiPi+1,  Pi+12Aj+172 = \/Pj Ajpj+1A] 1.

Following these averages, a natural approximation of the matFchag\ 5), andQ in the
middle can be obtained. Regardingﬂ’fgl/2 estimations, we use afirst-order approximation
for the partial derivatives. Additionally, to estimate the source teBms 1 we propose the
following evaluations

Bj.j+1 = (0, = Pj+1/2(Aj11 — Aj) + (AX) (G0 A) 1172, _(AX)(qul)jJrl/Z)T .

In the particular context of the quasi-one-dimensional unsteady flow through a duct
varying cross-section, it is important to distinguish between the approximations used
the term related to the variation of the pipe cross-sectional gréax), and these ones
used to approximate the terms related to the presence of friction forces and heat trans
pipe walls, which are less important.

We note thatp A'(x) should always be balancing the second component of the fluxe
therefore treated as a divergence term, as it really is because it represents the diverger
the surface forces over the lateral walls of the control volume. Because of this, itis import
to approximate the integral gf A'(x) betweerx; andx;,1 as an expression of the form

Pi+1/2(Aj+1 — A, (64)

wherepj1/2 represents some average of the pressure betweamdx; ;1.
Note that if we consider the particular case in which at time

ol =p, pj=p, and uf=0, Vj,
wherep andp are constants, then

0
Pi+1Aj+1 — PjA] — Pj+12(Ajr1 — A))
0 pj

Gj+1—Gj

uj

gl

T
=0

=

and using the proof of Proposition 3.1 (part 3), we have
+1 :
W]-n = Wj”, Vj
consequently
n+1 _ 4n

Pt =pl =5, pl pl=p. and uf™t=0, V]

which is the exact physical solution.
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Since
p(X,)=p, px,t)=p, and ux,t)=0 (65)
is a stationary solution to (60), which in this case can be written by
d /
ax (PA = PAX), (66)

the above analysis can be interpreted, in the context ofCtheoperty introduced by
Bermidez and Vzquez in [2], as that the scheme (62)—(63) with the discretization d
fined by (64) for the source terms, satisfies ¢éixactC-propertyrelating to the stationary
solution (65) when applied to the stationary problem given by (66).

Analogously, if the expression (64) By, ;11 is replaced by an approximation of the form

Pi+1/2A (Xj+1/2) AX

thenthe scheme (62)—(63) only satisfiesthproximate’-propertyrelating to the stationary
solution (65) for Problem (66).

With respect to the averages used to evaluate the pressure and the others quar
(u, H, p, andp A) inthe approximation of the vect®; ; 1, the differences are less obvious.
By example, our experiments indicate that replacing Roe’s average by the simple arithm
average leads to similar results.

Two convergent—divergent nozzles with different geometry are chosen for our expe
ments. In both cases, the problem is outlined as the calculation of nonsteady compres:
flow which is established between two atmospheres, connected by a nozzle, when initi
the ideal separation existing between the atmospheres and the pipe at both ends is ins
neously removed. In all the cases, we show the numerical results when the steady solt
is reached. The calculation of the analytical steady solutions for these classical proble
can be found in [1] and [14], for example.

5.1. Problem1

The first problem, proposed by Anderson in [1], is concerned with a convergent—diverg
nozzle with a parabolic area distribution given by

AX) =1+22(x—152 0<x<3. (67)

This nozzle is illustrated in Fig. 5.

The calculations have been performed with 1 bar of pressure at the left side and 0.6
at the right and 300 K of temperature at both sides, in such a way that a shock is estabili
inside the pipe.

Allthe calculations were performed with CFL equal to 0.9 and uniform computational gr
inside the nozzle. A half length mesh at both ends of the pipe was used. This change av
the conservation mistakes ocurring along the pipe as a consequence of the mismatc
between the calculation of the flow variables at both ends of the pipe and the interior reg
(see [5]).

In Figs. 6 and 7 we show the numerical results (circles) of pressure and Mach num
obtained by the second-order TVD scheme (62)—(63) when the steady solution is carried
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FIG.5. Convergent—divergent nozzle for Problem 1.

The calculations were performed whiea: 0.1 s and using 51 points. To see the accuracy o
the TVD scheme, the computed results are compared with the exact solutions (solid lir

In this case, and due to the strong influence of the throat on the flow, it has not b
possible to obtain any solution with the classic, two-step Lax—Wendroff method, a n
ural extension for the vectorial case of Egs. (9) with (10). The method failed becal
of a nonphysical overshoot which leads to negative thermodynamic conditions at sc
point in the pipe. The extension for the system case of the scheme described by (16)
(17), named one-step, adapted Lax—Wendroff scheme, allows for a solution. However,
accuracy of the obtained results is, in this case, quite poor. As is observed in Fig. |
strong false shock (subsonic—supersonic) appears at the throat, spoiling the solution.
is not only due to the oscillatory nature of the adapted Lax—Wendroff method, but a
because this method has no control over the satisfaction of the positive entropy varia
requirement.

100000 <
75000 A
5 W
2
2 50000 -
E 5
Ay
25000 A
0 T L) T L) T 1
0 0.5 1 1.5 2 2.5 3

DISTANCE

FIG. 6. Pressure steady results for the nozzle of Fig. 5, calculated with scheme (62)—(63) using 51 node
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0 0.5 1 1.5 2 25 3
DISTANCE

FIG.7. Mach number steady results for the nozzle of Fig. 5, calculated with scheme (62)—(63) using 51 not

In order to obtain a good solution to this kind of problem, one in which the cross-secti
variation has a strong influence on the flow due to the existence of supersonic velocities
shocks, it is essential to use a nonoscillatory technique. The numerical solution obtai
with the TVD scheme shows very good conservation and gives a reasonable resolutio
the shock even for alower number of nodes as can be seen in Figs. 9 and 10, which repr:
the pressure and Mach number steady solutions obtained with a 25-uniform grid.

5.2. Problem2

The flow through the convergent—divergent nozzle represented in Fig. 11 is the s
ond selected test problem. It has been proposed by the authors in [4] as a more diffi
100000

75000 1

50000

PRESSURE

25000 A

0 0.5 1 1.5 2 2.5 3
DISTANCE

FIG. 8. Pressure steady results obtained with the adapted, one-step Lax—Wendroff method for the nozz
Fig. 5 (51 nodes).
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FIG. 9. Pressure steady results for the nozzle of Fig. 5, calculated with scheme (62)—(63) using 25 node

test because of the existence of a discontinuity A6fx) at the throat. A pipe with a
1-m length, 0.05-m diameter at both sides, and 0.038-m diameter at the throat has |
chosen.

For this problem, the flow is defined as the homentropic release of pure air through
indicated nozzle, from the left atmosphere at 2 bars of pressure and 300 K of tempera
to the right atmosphere at 1.5 bars of pressure.

Figures 12 and 13 show the pressure and the velocity steady numerical solutions for
problem calculated with the second-order TVD scheme (62)—(63) using 51 points compe

2.5 1

MACH NUMBER

0 0.5 1 1.5 2 2.5 3
DISTANCE

FIG. 10. Mach number steady results for the nozzle of Fig. 5, calculated with scheme (62)—(63) us
25 nodes.
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FIG. 11. Convergent—divergent nozzle for Problem 2.
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FIG. 12. Pressure steady results for the convergent—divergent nozzle of Fig. 11, calculated with sche
(62)—(63) using 51 nodes.
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FIG. 13. Velocity steady results for the nozzle of Fig. 11, calculated with scheme (62)—(63) using 51 node
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FIG. 14. Pressure steady results for the nozzle of Fig. 11, calculated with scheme (62)—(63) using 25 nod

with the exact solution (solid line). Analogously, Figs. 14 and 15 show the pressure and
velocity steady numerical solutions calculated using 25 mesh points.

As observed, with the second-order TVD scheme the solution is very close to the e
solution and no false shock is obtained. A wrong point, the internal shock point, is obser
in the pressure and velocity numerical solutions calculated with the TVD scheme. Thi
due to the fact that, at the control volume, in which the shock is located, the flow proper
are space averaged values between the corresponding subsonic and supersonic stat
therefore it leads to a nonreal physical solution at that point.

500 1
400 1
300 A

297 \C\O\(&KOO

100 1

VELOCITY

0 T T T T 1
0 0.2 0.4 0.6 0.8 1

DISTANCE

FIG. 15. Velocity steady results for the convergent—divergent nozzle of Fig. 11, calculated with schel
(62)—(63) using 25 nodes.
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FIG.16. Erroragainst mesh size of the scheme (62)—(63) for a shock-free test case in the convergent—dive!
nozzle of Fig. 11.

In order to illustrate the accuracy of the scheme (62)—(63), a shock-free test problem
the nozzle of Fig. 11 has been considered. In this case, the pressure at the right atmos
is chosen to be 1.9 bars. Using as reference the mass flow-rate solution, which is con:
at steady state, the errors measured by root-mean-square for different mesh sizes
been plotted in Fig. 16. These indicate that the proposed TVD scheme is second-o
accurate at the steady state. Although results are omitted, similar conclusions were obte
using the corresponding first-order TVD scheme; i.e., both first- and second-order T
methods constructed in the present research approximate steady solutions with sec
order accuracy.

4 1

— Problem 1
= Problem 2

LOG10 (residual)

LoLoLL
o)} B [\ el
1 1 1 1

—
)

0 500 1000 1500 2000 2500 3000 3500
ITERATIONS

FIG. 17. Convergence histories of scheme (62)-(63) for the mass flow rate solution in Problems 1 and 2
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Figure 17 shows the convergence history for the mass flow-rate solution obtained v
the TVD scheme (62)—(63) for Problems 1 and 2, respectively. As can be seen, the spe
convergence to the steady state is very similar in both cases. It is important to note tha
have not found differences between the convergence histories achieved with this sch
and with the one of first-order.

Although the TVD scheme described by (62)—(63) provides a solution very close
the exact solution for the problems described in this paper, the method also may ac
entropy violating discontinuities as solution. Note that when the source term vanishes
corresponding first-order method defines the Roe’s scheme, which is an entropy viola
scheme. In [4], we have proposed a modification of this method in order to force |
satisfaction of the entropy condition.

6. CONCLUSIONS

A general technique to construct numerical methods with a capacity to recognize ste
solutions for hyperbolic conservation law systems with source terms has been presel
We propose the transformation of the nonhomogeneous conservation law problem in
homogeneous one, introducing a new flux which is generated by adding the primitive of
source term to the physical flux.

The technique developed in this paper can be seen as a formalization of the empi
method suggested by Roe in [23] for the inclusion of source terms in a general high-or
scheme. This technique is more general and can be applied to extend well-known sche
to nonhomogeneous conservation laws, guaranteeing the balance of the flux and sc
terms at steady states. Nevertheless, to obtain the mentioned balance, the formulation ¢
schemes must be such that all the differences that appear in the schemes are expres
flux-differences including source terms and not as flow variable differences, which prev
the application of the some classic schemes from being immediate, being in some insta
impossible as is the case of the two-step Lax—Wendroff method, for example.

In this paper we have dealt with the generalization to nonhomogeneous conservea
laws of the explicit, second-order TVD schemes introduced by Harten in [11]. The ¢
tensions of the Q-schemes of Roe (originally introduced in [23]) and van Leer, propo:
both in [2], are obtained as particular cases of first-order TVD schemes. Extension:s
others flux-limiters and flux-vector splitting technigques for nonhomogeneous hyperhc
conservation laws, following the described technique, is the subject of work presently
progress.

The developed schemes have been applied to the calculation of quasi-one-dimens
flow through pipes with a variable cross-section. In these problems the variation of the cre
section, included in the source term, has a strong influence on the equations and ther
said problems are an excellent reference to test the stated theory. The second-order
schemes were found to be robust and with the ability to capture steady solutions accure
These schemes can also be applied to other hyperbolic conservation laws with source te
e.g., the shallow water.

Although the interest of this paper has been on the development of high-order num
cal techniques with a capacity to recognize steady states of nonhomogeneous hyper
conservation laws, the proposed schemes were tested on a scalar conservation law
a stiff source term. Numerical experiments confirmed that the introduction of the n
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numerical speeds associated with the source term gives the correct propagation spee
discontinuities for an acceptable level of stiffness.
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